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Multiensemble sampling: An alternative efficient Monte Carlo technique
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We present a general recipe for the successful non-Boltzmann sampling simulation from which data includ-
ing the free energy of a system over a moderately wide range of thermodynamic states can be obtained. A
universal form of the non-Boltzmann weighting functi?vis derived by a functional minimization so that a
most favorable condition for the simultaneous investigation of several states with uniform accuracy is satisfied.
The realization of the method is simple and systemic. The accuracy of the method is demonstrated by com-
parison with reliable earlier results for a Lennard-Jones fil#d063-651X96)07112-7

PACS numbds): 02.70.Lq, 05.20.Gg, 64.70.Fx

I. INTRODUCTION method is simple and systemic. We demonstrate the reliabil-
ity of this method by a comparison with reliable early results
Monte Carlo(MC) simulation is now a popular tool for for a Lennard-Jones fluid. We demonstrate its efficiency by
the investigation of various statistical mechanical problemsobtaining the data including the free energy of the fluid on a
Although the recent development of supercomputing poweflensity over an almost infinite temperature range of gas
has made it possible to study larger and more complicateBhase from a single simulation and the data on an isotherm
systems, improving the efficiency of the MC simulation is across the liquid-gas coexistence region from six simula-
still an important matter of concern. tions.
From a MC simulation, one usually obtains averages of
thermodynamic quantities at a single thermodynamic state. Il. THEORY
Various efforts to remove this limitation and obtain informa-
tion over a range of states have been mide7]. The sim-
plest approach in this direction may be the one of Ferrenberg For the sake of a logical argument, we begin by reviewing
and Swendsef3]. They used the information of configura- the basic theory of non-Boltzmann sampling sch¢e6,§
tion distribution obtained from a single conventional MC for the general case. Suppose that one is going to investigate
simulation to study the entire scaling region near a phas8 similar N-particle systems with potential energigs and
transition. However, in general, the parts of configurationvolumesV, at temperature$;, I=1, ... n. If all the U, are
space sampled from a conventional MC simulation are notdentical, the problem reduces to investigatimgtates of a
broad enough to cover the parts relevant to more distariystem. Their dimensionless canonical configuration inte-
neighborhoods of the state at which the simulation was pergralsZ, are
formed and it is hard to extract information over a wider
range of states. In order to surmount this difficulty., one has Z|:V|_NQ|=V|_NJ exd — U, (qN)/kT,]1d"g, (1)
to sample configurations upon a non-Boltzmann distribution
function W with adequate coverage of the relevant parts of
configuration space for every state. But the problem is wh
the recipe forW is. In previous workg4-6] of the non-
Boltzmann sampling approach, there was no geremalori
recipe forW. In the previous technique, @ hocform of W
should be chosen for a given system and adjusted by trial a
error with monitoring the sampled distribution until the dis-
tribution is as wide and uniform as possible, forming an Z|=f exp{— ®,[(VIP)N, T, 1}dNs, 2
“umbrella” over relevant regions of configuration space. In
this sense the technique has been named “umbrella safhere g, = U /kT,. The canonical ensemble average of a
pling .[4]. A few years ago, we deve_loped a non—BthzmannphySica| quantityX for systeml is
sampling method with a general recipeWf[7] for estimat-
ing the free-energy difference between two systems and
demonstrated its accuracy and efficiency. <X>|:Zflj XL(ViP9Nexp{ — @\ [(VIPN, T THd"s.
In this paper we present a generalized version of our pre- 3)
vious method[7]. A universal form of W is derived by a
functional minimization so that a most favorable condition It is impossible, in general, to obtain data of ottmer 1
for the simultaneous investigation of several systems osystems from a conventional MC simulation for a single sys-
states with uniform accuracy is satisfied. The resulting fornmtem since the parts of configuration space sampled upon the
is a nonlinear superposition of Boltzmann distributions forBoltzmann distribution for a system are not broad enough to
the systems or states to be investigated. The realization of thmver all the parts of configuration space relevant to the other

A. Non-Boltzmann sampling scheme

herek is the Boltzmann constarg andd"q represent the
-particle configuration and corresponding volume element,
and Q, are the canonical configuration integrals. By intro-
ducing scaled position vectoss=V | '3q; for ith particle,

e is rewritten as
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systems. For the successful simultaneous investigation, colhosen so that the sum of the squares of expected relative
figurations should be sampled upon a general distribition errors in (W™t exp(—®,)),, is minimum, which is propor-
that covers the relevant parts of configuration space for evergonal to
system adequately. 72

Assume that configurations are sampled on an arbitraryZ (W™ %exp(—2®)))w

distribution functionW(s"). The probability density of con- 4 (W~ 1ex;i—<1>,))\2,\,
figurationsp,(s") for systeml is related with the probability
density of sampled configurations,(s") by :f W stf WIS [Z 2exp(— 2;)]dNs (10
oy O PIW(d's !
()= [ exp(—®)dVsg fw(sV)dNs for sufficiently large sample sizes. By setting the functional

derivative with respect tdV equal to zero and solving for it,

= pw(S )W Texp( — @)W texp(— ®)))w, (4 e obtain a nontrivial solution of the/ function

where( ),y denotes an average over sampled configurations. 12
The canonical ensemble average of a physical quaktity W= cons{E Z %exp(—2®))| . (12)
calculated by [

This is just the generalized form of our previous formida
1/3.\N N
<X>'_J XL(Vi®9)Mpy (s d"s of W; for n=2, the former becomes identical to the latter.
B B Substituting Eq(11) into Egs.(4), (5), and(7) yields
=(XW lexp — @)W/ (W lexp —®))y. (5
Another advantage of this approach is that the reduced n=pwbi (Fow, (12
free-energy difference between systemnd systenm,
¥ g Y (X0 =(XFwH(F 13
An A [ ViZ 5 q
K kT " VoZe © an
can be obtained directly from calculating Z1Zn=exp( Cim)(Fw/(Fm)w, (14
Z,1Zp= (W™ exp — @) ) /(W lexp —Dp))y. (7)  where
Thus, if the free energy of a system was known, free energies -2
of others are immediately given. The chemical potential canF1=Z; ‘W 'exp(— @) 2 eXg2(Ciy+AP)y)] ,
be obtained, in turn, by (15)
=A//N+p,\V,/N, 8
SR ® Cim=IN(Z/Zy,), (16)

with the pressure, calculated by
andA®,,=®,—®,,. Equations(12)—(14) are true for any

NKkT, 1 N sets of values of shift constan®,,, but the set satisfying
= V) 3N E Wls- Vi the self-consistent condition of E¢L6) optimizes the simu-
W lation result. The self-consistency €, can be achieved

easily by preliminary runs of simulation in which iterative
X (W~ texp(— ®)))w } (9)  adjustments are made by evaluating E@sl) and (16). In
this work, starting with the initial values of zeros, we ob-
With an appropriate choice o, in principle, one would tained almost self-consistent values@f,, with a few short
greliminary runs.

be able to investigate several systems at a time. But, th The Mark h ¢ i i ted b
problem is how to choos@/ appropriately. The efficiency of e Markov chain of configurations is generated by ac-
h epting the trial move from configurational stat® configu-

the non-Boltzmann sampling simulation is determined by t & tional stat ith th babilit
choice of W. The job without ana priori recipe forW is rational statg wi € probability
uncertain. - 1/2

| 2z texd —29())]
B. Multiensemble sampling pw(]) _ |
A most fa\(orable form oV, which can be used ur_]iyer- pwii) 2 Z;zexq—ZCDm(i)]
sally, is obtained by the manner of least-squares fitting as
follows. For an adequate simultaneous investigation of sev- - o 112
eral systems, configurations should be sampled so that the => (1) 17)
estimate ofp(s") is equally accurate for every system. That T exp26®))|

is, the error in the estimate of the denominator
(W texp(—®)))y in Eq. (4) should be small and balanced wheres®,=®,(j)—®,(i). Whenpy(j)/pw(i)>1, the new
for everyl. This condition is optimally satisfied wheW is  configuration is always accepted.
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TABLE I. Results of the constant densi;m3=0.02. Values in() are the results of Hansen and Veflet.

kTle (F\) plpkT ASINKT uSIKT
el 0.199+0.015 1.000 —4.912 —-3.91
100.00 0.18%0.009 1.019 —4.893 —3.87
50.00 0.196:0.007 1.021 —4.891 —3.87
25.00 0.1940.007 1.023 —4.890 —3.87
12.50 0.185:0.008 1.022 —4.892 —3.87
6.25 0.195-0.008 1.015 —4.898 —3.88
3.00 0.192-0.009 0.996 —4.917 —3.92
1.15 0.206:0.010 0.917(0.918 —4.994 (-5.00 —4.08
0.75 0.20%0.018 0.823(0.829 —5.087 (—-5.08 —4.26
ll. APPLICATIONS agrees well with an earlier investigatid®]. The almost

. . . identical estimates ofF,), shown in Table I, indicate that
As a test we applied the present method to investigate thFhe self-consistencyogli:fn has been achieved very closely.

phase franlon O 8 e lones 126 fud for MM erors () were esimatd, adng account of e
' y tatistical inefficiency8]. As shown in Table I, the relative

e e nvestgaon ver cartes ot i s o s 5. vt ot acge peraus. T
g y U, : ' ‘7 extra error at the edge temperature is due to the relatively

the “hard-core” radius of the particle anélis the depth of . . . : . o
the potential well. In the case of the isotherm, it is importantlnacc'“'rate sampling for tails of configuration distribution,

to apply the long-range correctiofi] to the calculated in- which always occurs in the important sampling scheme.

stantaneous energies and pressures during the course 'f)rlp m Eqs.(6) and(14) it easy to show that the error in the
. . =Nerg d p 9 ; estimate ofA[/kT, is the sum of the relative errors in the
simulations, since they will not be the same for different

densities. In the general case, the calculation®f,, for the estimates ofF;) and(F..). It tums out that only the last digit

difference of densities is computationally expensive Fortu-iS uncertain in the estimated valuesAfi/NkT by less than
: -omp y exp ' 2; the relative errors are less than 0.05%. This was confirmed
nately, for a simple potential such as the Lennard-Jones p

. . . ?5y the comparison with the results obtained from simulations
tential, A®,,, can be easily calculated by scaling. For theWith different initial configurations.

Lennard-Jones potential it can be done by dividing up the In order to see if the sampling has been performed as we

otential into its repulsive and attractive components and . .
Enultiplying them by%orresponding scaling factcﬁ%ﬁ. expected in the theory, the energy density of sampled con-

A. Constant density
0.15 , -

For the fluid on density 0.G2 3, nine temperatures from
Kt/e=0.75 toc were investigated at a time. Ai=c, the
fluid is identical to the ideal gas and the free energy is ana-
lytically calculated. Theabsolutevalues of the free energy at
finite temperatures can be obtained by adding the free energy
of the ideal gas to our observed values relativ@ to~. The 0.10
guantity of interest in this work is the configurational free
energyA°, defined by

ASkT=—In(Qo 3N/NI). (18

Energy Density

The reduced configurational free energy per particle of the
ideal gas at density 0.023 is AS/NkT=-4.912.

Two preliminary 5<10° step runs were performed for the
simultaneous adjustment of shift constants. In the first run
the values of the shift constan@,,, were set to zero initially
and updated iteratively during the run. The iterative update
was made by evaluating Eqd.4) and(16) every interval of 0.00 S
5x10* steps. It appears that the updated values of each shift ~0.4 -0.2 0.0 0.2
constant converge very quickly and oscillate about its self- U/Ne
consistent value after 2:610° steps. In the second run the
shift constants were adjusted once more by taking averages fiG. 1. Plot of energy densities. The solid line is the energy
in Eq. (14) over the whole run. In the final run i@onfigu- density of configurations sampled by the present method and the
rations were generated a#,), energy, pressure, free en- dotted lines are the energy densities for individual temperatures
ergy, and chemical potential were calculated. obtained from Eq(12); kT/e=0.75(a), 1.15(b), 3.00(c), 6.25(d),

Table | lists the results and shows that the present methotP.50(e), 25.00(f), 50.00(g), 100.00(h), and (i).

0.05 -
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TABLE II. Multiensemble simulations on the isotherkil/e

T T T
=1.15. HereN, is the length of the Markov chain. ¢
1
Density range Investigated densities N¢ -3 *1’ B
0.015-0.100 0.015, 0.020, 0.030, 0.040, 0.0504.5x10° %\
0.060, 0.070, 0.080, 0.090, 0.100 .
0.100-0.190 0.100, 0.110, 0.120, 0.130, 0.1404.5x10° e )
0.150, 0.160, 0.170, 0.180, 0.190 § -,
0.190-0.320 0.190, 0.200, 0.215, 0.230, 0.245, 6x10° U\ —4r \o\ 1
0.260, 0.275, 0.290, 0.300, 0.320 ~ '\
0.320-0.500 0.320, 0.340, 0.360, 0.380, 0.400, 6x10° \
0.420, 0.440, 0.460, 0.480, 0.500 .
0.500-0.725 0.500, 0.525, 0.550, 0.575, 0.600, 9x10° \\\\\\\
0.625, 0.650, 0.675, 0.700, 0.725 -5 - |
0.725-0.920 0.725, 0.750, 0.775, 0.800, 0.825, 9x10° \
0.850, 0.875, 0.900, 0.920 )
| | | | | | |
0 10 20 30 40 50 60 70
figurations was evaluated as shown in Fig. 1. The energy 1/pc?

densities for individual temperatures were obtained from Eq.

(12). The results shown in Fig. 1 and Table | verify that the  FIG. 3. Temperature-scaled configurational free energy per par-
present method samples a superposition of the ensembles tiafle versus the inverse of the reduced density for the results of the
interest and allows an investigation of several nearby statggesent method®), compared with the results of Hansen and Ver-
with uniform accuracy for every states. let[9] ().

sity 0.02 2 is known from the previous stage, the values of
the free energy for other densities are immediately obtained.
For the fluid on the iSOtherer,T/6=1.15, SiX consecutive The simultaneous adjustment G]im was carried out as
subranges of density from 0.045° to 0.92r° were inves-  one in the previous stage, varying the size of the updating
tigated with six independent parallel simulations. For eachnpteryal up to 210° steps. Except for first two low-density
density range, 9—10 densities were investigated. Table Il Iistganges, however, the values of shift constants did not con-
the nominal density ranges and densities. Since our six simMyrerge well. It appears that the result depends on the initial
lations overlapped at their edge densities, they immediatelyonfiguration. This indicates that the density range is so wide
give the relative free energy over the whole range of invesangor the parts of configuration space relevant to individual
tigated densities. Furthermore, since the free energy at deppminal densities are relatively localized. For the successful

B. Isotherm
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FIG. 2. Reduced pressure versus reduced density for the results FIG. 4. Temperature-scaled configurational chemical potential
of the present metho@®), compared with the results of Hansen and versus the reduced density for the results of the present mé@od
Verlet[9] (¢) and Powles, Evans, and QuirkeQ] (A). compared with the results of Powles, Evans, and QUitkg (A).
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TABLE IlI. Liquid-gas transition properties of the Lennard- Fig. 3. A few data near each of transition points are fitted by

Jones fluid akT/e=1.15. L is the latent heat of vaporization. a polynomial. The double-tangent line on two curves of
5 5 5 polynomials is obtained by solving two simultaneous equa-

Source pelo’ Pgad” Piig® Lle tions. The latent heat of vaporization is calculated by

present method 0.0591 0.071 0.610 4.33 _ _ B

previous work 0.0597 0.073 0.606 4.34 L=TAS=A(U-A), (20

(Ref. [9])

where S is the entropy and\; represents the change of a
quantity upon vaporization.

simultaneous adjustment of shift constants with such short
interval lengths, narrower density ranges should be taken IV. SUMMARY

and/or more densities should be included in the investigation i ,
over a density range. Instead of doing this, however, one can & have shown that the present method is accurate, effi-

obtain a preliminary set of shift constants from short runs o€t and greatly useful in the study of phase transitions.
two-ensemble sampling far—1 pairs of nearest densities, The theoretical d_erlvatlc_)n of the form o¥ guarantges the
from which n—1 self-consistent shift constants are deter-accuracy and universality of the method. The existence of
mined independently. In our previous wofk] of two- the self-consistent condition E¢L6), which should be satis-

ensemble simulations, it has been demonstrated that tHi¢d Dy parameters iW for the optimal simulation result,
value of the shift constant converges to its self-consistert'MPlifies the realization of the method; there is no need to
value very quickly if the overlap of two distributions is not Monitor the sampled distribution for the adjustmentVif

too poor. The complete set of shift constants is obtained ijVich is essential in the earlier technigiig6] where anad
turn by the relations between the shift constants hoc form of W is taken. The universality and simplicity of
the present technique make it powerful and efficient, espe-

Cim=—Cmi» Cim=Ci+Cxm- (19)  cially in the study of systems with unknown behavior. The
method is easily applied to other kinds of ensembles such as
In the two-ensemble simulation the value of shift constanisobaric or grand canonical MC. Finally, we note that con-
was set to zero initially and updated by two runs of 4@ps.  tinuous thermodynamic functions over the range of investi-
After this, a preliminaryn-ensemble sampling run of 30 gated states can also be generated, using a technique like that
steps was performed for each density range and the values of Ferrenberg and Swendsgsi.
shift constants were updated once more, simultaneously. In
the f|nal_ runs,(4.5-9x10° configurations were generated_ ACKNOWLEDGMENTS
and the internal energy, pressure, free energy, and chemical
potential were calculated. Figures 2—4 plot the results of This work was supported in part by the Basic Science
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