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We present a general recipe for the successful non-Boltzmann sampling simulation from which data includ-
ing the free energy of a system over a moderately wide range of thermodynamic states can be obtained. A
universal form of the non-Boltzmann weighting functionW is derived by a functional minimization so that a
most favorable condition for the simultaneous investigation of several states with uniform accuracy is satisfied.
The realization of the method is simple and systemic. The accuracy of the method is demonstrated by com-
parison with reliable earlier results for a Lennard-Jones fluid.@S1063-651X~96!07112-7#

PACS number~s!: 02.70.Lq, 05.20.Gg, 64.70.Fx

I. INTRODUCTION

Monte Carlo~MC! simulation is now a popular tool for
the investigation of various statistical mechanical problems.
Although the recent development of supercomputing power
has made it possible to study larger and more complicated
systems, improving the efficiency of the MC simulation is
still an important matter of concern.

From a MC simulation, one usually obtains averages of
thermodynamic quantities at a single thermodynamic state.
Various efforts to remove this limitation and obtain informa-
tion over a range of states have been made@1–7#. The sim-
plest approach in this direction may be the one of Ferrenberg
and Swendsen@3#. They used the information of configura-
tion distribution obtained from a single conventional MC
simulation to study the entire scaling region near a phase
transition. However, in general, the parts of configuration
space sampled from a conventional MC simulation are not
broad enough to cover the parts relevant to more distant
neighborhoods of the state at which the simulation was per-
formed and it is hard to extract information over a wider
range of states. In order to surmount this difficulty, one has
to sample configurations upon a non-Boltzmann distribution
functionW with adequate coverage of the relevant parts of
configuration space for every state. But the problem is what
the recipe forW is. In previous works@4–6# of the non-
Boltzmann sampling approach, there was no generala priori
recipe forW. In the previous technique, anad hocform ofW
should be chosen for a given system and adjusted by trial and
error with monitoring the sampled distribution until the dis-
tribution is as wide and uniform as possible, forming an
‘‘umbrella’’ over relevant regions of configuration space. In
this sense the technique has been named ‘‘umbrella sam-
pling’’ @4#. A few years ago, we developed a non-Boltzmann
sampling method with a general recipe ofW @7# for estimat-
ing the free-energy difference between two systems and
demonstrated its accuracy and efficiency.

In this paper we present a generalized version of our pre-
vious method@7#. A universal form ofW is derived by a
functional minimization so that a most favorable condition
for the simultaneous investigation of several systems or
states with uniform accuracy is satisfied. The resulting form
is a nonlinear superposition of Boltzmann distributions for
the systems or states to be investigated. The realization of the

method is simple and systemic. We demonstrate the reliabil-
ity of this method by a comparison with reliable early results
for a Lennard-Jones fluid. We demonstrate its efficiency by
obtaining the data including the free energy of the fluid on a
density over an almost infinite temperature range of gas
phase from a single simulation and the data on an isotherm
across the liquid-gas coexistence region from six simula-
tions.

II. THEORY

A. Non-Boltzmann sampling scheme

For the sake of a logical argument, we begin by reviewing
the basic theory of non-Boltzmann sampling scheme@4–6,8#
for the general case. Suppose that one is going to investigate
n similar N-particle systems with potential energiesUl and
volumesVl at temperaturesTl , l51, . . . ,n. If all theUl are
identical, the problem reduces to investigatingn states of a
system. Their dimensionless canonical configuration inte-
gralsZl are

Zl5Vl
2NQl5Vl

2NE exp@2Ul~q
N!/kTl #d

Nq, ~1!

wherek is the Boltzmann constant,qN anddNq represent the
N-particle configuration and corresponding volume element,
andQl are the canonical configuration integrals. By intro-
ducing scaled position vectorssi5V l

21/3qi for i th particle,
Zl is rewritten as

Zl5E exp$2F l@~Vl
1/3s!N,Tl #%d

Ns, ~2!

whereF l5Ul /kTl . The canonical ensemble average of a
physical quantityX for systeml is

^X& l5Zl
21E X@~Vl

1/3s!N#exp$2F l@~Vl
1/3s!N,Tl #%d

Ns.

~3!

It is impossible, in general, to obtain data of othern21
systems from a conventional MC simulation for a single sys-
tem since the parts of configuration space sampled upon the
Boltzmann distribution for a system are not broad enough to
cover all the parts of configuration space relevant to the other
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systems. For the successful simultaneous investigation, con-
figurations should be sampled upon a general distributionW
that covers the relevant parts of configuration space for every
system adequately.

Assume that configurations are sampled on an arbitrary
distribution functionW~sN!. The probability density of con-
figurationsrl~s

N! for systeml is related with the probability
density of sampled configurationsrW~sN! by

r l~s
N!5

exp~2F l !/*W~sN!dNs

* exp~2F l !d
Ns/*W~sN!dNs

5rW~sN!W21exp~2F l !/^W
21exp~2F l !&W , ~4!

where^ &W denotes an average over sampled configurations.
The canonical ensemble average of a physical quantityX is
calculated by

^X& l5E X@~Vl
1/3s!N#r l~s

N!dNs

5^XW21exp~2F l !&W /^W
21exp~2F l !&W . ~5!

Another advantage of this approach is that the reduced
free-energy difference between systeml and systemm,

Am

kTm
2

Al

kTl
5 lnS VlZl

VmZm
D , ~6!

can be obtained directly from calculating

Zl /Zm5^W21exp~2F l !&W /^W
21exp~2Fm!&W . ~7!

Thus, if the free energy of a system was known, free energies
of others are immediately given. The chemical potential can
be obtained, in turn, by

m l5Al /N1plVl /N, ~8!

with the pressurepl calculated by

pl5
NkTl
Vl

F12
1

3N K (
i51

N

W21si•“ iF l L
W
Y

3^W21exp~2F l !&W G . ~9!

With an appropriate choice ofW, in principle, one would
be able to investigate several systems at a time. But, the
problem is how to chooseW appropriately. The efficiency of
the non-Boltzmann sampling simulation is determined by the
choice ofW. The job without ana priori recipe forW is
uncertain.

B. Multiensemble sampling

A most favorable form ofW, which can be used univer-
sally, is obtained by the manner of least-squares fitting as
follows. For an adequate simultaneous investigation of sev-
eral systems, configurations should be sampled so that the
estimate ofrl~s

N! is equally accurate for every system. That
is, the error in the estimate of the denominator
^W21 exp~2Fl!&W in Eq. ~4! should be small and balanced
for every l . This condition is optimally satisfied whenW is

chosen so that the sum of the squares of expected relative
errors in ^W21 exp~2Fl!&W is minimum, which is propor-
tional to

(
l

^W22exp~22F l !&W
^W21exp~2F l !&W

2

5E W dNsE W21(
l

@Zl
22exp~22F l !#d

Ns ~10!

for sufficiently large sample sizes. By setting the functional
derivative with respect toW equal to zero and solving for it,
we obtain a nontrivial solution of theW function

W5constF(
l
Zl

22exp~22F l !G1/2. ~11!

This is just the generalized form of our previous formula@7#
of W; for n52, the former becomes identical to the latter.
Substituting Eq.~11! into Eqs.~4!, ~5!, and~7! yields

r l5rWFl /^Fl&W , ~12!

^X& l5^XFl&W /^Fl&W , ~13!

and

Zl /Zm5exp~Clm!^Fl&W /^Fm&W , ~14!

where

Fl5Zl
21W21exp~2F l !5H(

m
exp@2~Clm1DF lm!#J 21/2

,

~15!

Clm5 ln~Zl /Zm!, ~16!

andDF lm5F l2Fm . Equations~12!–~14! are true for any
sets of values of shift constantsClm , but the set satisfying
the self-consistent condition of Eq.~16! optimizes the simu-
lation result. The self-consistency ofClm can be achieved
easily by preliminary runs of simulation in which iterative
adjustments are made by evaluating Eqs.~14! and ~16!. In
this work, starting with the initial values of zeros, we ob-
tained almost self-consistent values ofClm with a few short
preliminary runs.

The Markov chain of configurations is generated by ac-
cepting the trial move from configurational statei to configu-
rational statej with the probability

rW~ j !

rW~ i !
5F (

l
Zl

22exp@22F l~ j !#

(
m

Zm
22exp@22Fm~ i !#

G 1/2

5F(
l

Fl~ i !
2

exp~2dF l !
G1/2, ~17!

wheredF l5F l( j )2F l( i ). WhenrW( j )/rW( i ).1, the new
configuration is always accepted.
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III. APPLICATIONS

As a test we applied the present method to investigate the
phase transition of a Lennard-Jones 12-6 fluid for which
there are reliable earlier results. For the system with 108
particles the investigations were carried out in two stages: on
constant gas density 0.02s23 and isotherm 1.15e/k. Heres is
the ‘‘hard-core’’ radius of the particle ande is the depth of
the potential well. In the case of the isotherm, it is important
to apply the long-range corrections@8# to the calculated in-
stantaneous energies and pressures during the course of
simulations, since they will not be the same for different
densities. In the general case, the calculation ofDFlm for the
difference of densities is computationally expensive. Fortu-
nately, for a simple potential such as the Lennard-Jones po-
tential, DFlm can be easily calculated by scaling. For the
Lennard-Jones potential it can be done by dividing up the
potential into its repulsive and attractive components and
multiplying them by corresponding scaling factors@8#.

A. Constant density

For the fluid on density 0.02s23, nine temperatures from
Kt/e50.75 to` were investigated at a time. AtT5`, the
fluid is identical to the ideal gas and the free energy is ana-
lytically calculated. Theabsolutevalues of the free energy at
finite temperatures can be obtained by adding the free energy
of the ideal gas to our observed values relative toT5`. The
quantity of interest in this work is the configurational free
energyAc, defined by

Ac/kT52 ln~Qs23N/N! !. ~18!

The reduced configurational free energy per particle of the
ideal gas at density 0.02s23 is A `

c /NkT524.912.
Two preliminary 53105 step runs were performed for the

simultaneous adjustment of shift constants. In the first run
the values of the shift constantsClm were set to zero initially
and updated iteratively during the run. The iterative update
was made by evaluating Eqs.~14! and~16! every interval of
53104 steps. It appears that the updated values of each shift
constant converge very quickly and oscillate about its self-
consistent value after 2.53105 steps. In the second run the
shift constants were adjusted once more by taking averages
in Eq. ~14! over the whole run. In the final run 106 configu-
rations were generated and^Fl&, energy, pressure, free en-
ergy, and chemical potential were calculated.

Table I lists the results and shows that the present method

agrees well with an earlier investigation@9#. The almost
identical estimates of̂Fl&, shown in Table I, indicate that
the self-consistency ofClm has been achieved very closely.
The errors in^Fl& were estimated, taking account of the
statistical inefficiency@8#. As shown in Table I, the relative
errors are less than 5%, except for edge temperatures. The
extra error at the edge temperature is due to the relatively
inaccurate sampling for tails of configuration distribution,
which always occurs in the important sampling scheme.
From Eqs.~6! and ~14! it easy to show that the error in the
estimate ofA l

c/kTl is the sum of the relative errors in the
estimates of̂Fl& and^F`&. It turns out that only the last digit
is uncertain in the estimated values ofAc/NkT by less than
2; the relative errors are less than 0.05%. This was confirmed
by the comparison with the results obtained from simulations
with different initial configurations.

In order to see if the sampling has been performed as we
expected in the theory, the energy density of sampled con-

FIG. 1. Plot of energy densities. The solid line is the energy
density of configurations sampled by the present method and the
dotted lines are the energy densities for individual temperatures
obtained from Eq.~12!; kT/e50.75 ~a!, 1.15~b!, 3.00~c!, 6.25~d!,
12.50~e!, 25.00~f!, 50.00~g!, 100.00~h!, and` ~i!.

TABLE I. Results of the constant densityrs350.02. Values in~ ! are the results of Hansen and Verlet@9#.

kT/e ^Fl& p/rkT Ac/NkT mc/kT

` 0.19960.015 1.000 24.912 23.91
100.00 0.18760.009 1.019 24.893 23.87
50.00 0.19060.007 1.021 24.891 23.87
25.00 0.19460.007 1.023 24.890 23.87
12.50 0.18560.008 1.022 24.892 23.87
6.25 0.19560.008 1.015 24.898 23.88
3.00 0.19260.009 0.996 24.917 23.92
1.15 0.20060.010 0.917~0.918! 24.994 ~25.00! 24.08
0.75 0.20360.018 0.823~0.829! 25.087 ~25.08! 24.26
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figurations was evaluated as shown in Fig. 1. The energy
densities for individual temperatures were obtained from Eq.
~12!. The results shown in Fig. 1 and Table I verify that the
present method samples a superposition of the ensembles of
interest and allows an investigation of several nearby states
with uniform accuracy for every states.

B. Isotherm

For the fluid on the isotherm,kT/e51.15, six consecutive
subranges of density from 0.015s23 to 0.92s23 were inves-
tigated with six independent parallel simulations. For each
density range, 9–10 densities were investigated. Table II lists
the nominal density ranges and densities. Since our six simu-
lations overlapped at their edge densities, they immediately
give the relative free energy over the whole range of inves-
tigated densities. Furthermore, since the free energy at den-

sity 0.02s23 is known from the previous stage, the values of
the free energy for other densities are immediately obtained.

The simultaneous adjustment ofClm was carried out as
done in the previous stage, varying the size of the updating
interval up to 23105 steps. Except for first two low-density
ranges, however, the values of shift constants did not con-
verge well. It appears that the result depends on the initial
configuration. This indicates that the density range is so wide
and/or the parts of configuration space relevant to individual
nominal densities are relatively localized. For the successful

FIG. 2. Reduced pressure versus reduced density for the results
of the present method~d!, compared with the results of Hansen and
Verlet @9# ~L! and Powles, Evans, and Quirke@10# ~n!.

FIG. 3. Temperature-scaled configurational free energy per par-
ticle versus the inverse of the reduced density for the results of the
present method~d!, compared with the results of Hansen and Ver-
let @9# ~L!.

FIG. 4. Temperature-scaled configurational chemical potential
versus the reduced density for the results of the present method~d!,
compared with the results of Powles, Evans, and Quirke@10# ~n!.

TABLE II. Multiensemble simulations on the isothermkT/e
51.15. HereNc is the length of the Markov chain.

Density range Investigated densities Nc

0.015–0.100 0.015, 0.020, 0.030, 0.040, 0.050,
0.060, 0.070, 0.080, 0.090, 0.100

4.53106

0.100–0.190 0.100, 0.110, 0.120, 0.130, 0.140,
0.150, 0.160, 0.170, 0.180, 0.190

4.53106

0.190–0.320 0.190, 0.200, 0.215, 0.230, 0.245,
0.260, 0.275, 0.290, 0.300, 0.320

63106

0.320–0.500 0.320, 0.340, 0.360, 0.380, 0.400,
0.420, 0.440, 0.460, 0.480, 0.500

63106

0.500–0.725 0.500, 0.525, 0.550, 0.575, 0.600,
0.625, 0.650, 0.675, 0.700, 0.725

93106

0.725–0.920 0.725, 0.750, 0.775, 0.800, 0.825,
0.850, 0.875, 0.900, 0.920

93106
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simultaneous adjustment of shift constants with such short
interval lengths, narrower density ranges should be taken
and/or more densities should be included in the investigation
over a density range. Instead of doing this, however, one can
obtain a preliminary set of shift constants from short runs of
two-ensemble sampling forn21 pairs of nearest densities,
from which n21 self-consistent shift constants are deter-
mined independently. In our previous work@7# of two-
ensemble simulations, it has been demonstrated that the
value of the shift constant converges to its self-consistent
value very quickly if the overlap of two distributions is not
too poor. The complete set of shift constants is obtained in
turn by the relations between the shift constants

Clm52Cml , Clm5Clk1Ckm . ~19!

In the two-ensemble simulation the value of shift constant
was set to zero initially and updated by two runs of 105 steps.
After this, a preliminaryn-ensemble sampling run of 106

steps was performed for each density range and the values of
shift constants were updated once more, simultaneously. In
the final runs,~4.5–9!3106 configurations were generated
and the internal energy, pressure, free energy, and chemical
potential were calculated. Figures 2–4 plot the results of
early Monte Carlo results@9,10# and show that they agree
very well.

In Table III listed are the liquid-gas transition properties
obtained by constructing the double tangent on the curve in

Fig. 3. A few data near each of transition points are fitted by
a polynomial. The double-tangent line on two curves of
polynomials is obtained by solving two simultaneous equa-
tions. The latent heat of vaporization is calculated by

L5TD tS5D t~U2A!, ~20!

whereS is the entropy andDt represents the change of a
quantity upon vaporization.

IV. SUMMARY

We have shown that the present method is accurate, effi-
cient, and greatly useful in the study of phase transitions.
The theoretical derivation of the form ofW guarantees the
accuracy and universality of the method. The existence of
the self-consistent condition Eq.~16!, which should be satis-
fied by parameters inW for the optimal simulation result,
simplifies the realization of the method; there is no need to
monitor the sampled distribution for the adjustment ofW,
which is essential in the earlier technique@5,6# where anad
hoc form of W is taken. The universality and simplicity of
the present technique make it powerful and efficient, espe-
cially in the study of systems with unknown behavior. The
method is easily applied to other kinds of ensembles such as
isobaric or grand canonical MC. Finally, we note that con-
tinuous thermodynamic functions over the range of investi-
gated states can also be generated, using a technique like that
of Ferrenberg and Swendsen@3#.
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